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1 Riesz Represetntation for Hilbert Spaces and Orthonor-
mality

1.1 Riesz representation for Hilbert spaces

Let’s finish up a proof from last time.

Theorem 1.1. Let H be a Hilbert space, and let M be a closed subspace. Then any x ∈ H
can be written uniquely as x = y+ z, where y ∈M and z ∈M⊥. We write H = M ⊕M⊥.

Proof. Let δ = inf{‖x− y‖ : y ∈M}. Pick (yn)n in M such that ‖x− yn‖ → δ. We claim
that (yn) is Cauchy. We have

‖yn − ym‖2 + ‖yn + ym − 2x‖2 = 2(‖yn − x‖2 + ‖ym − x‖2).

Rewrite this as

‖yn − ym‖2 + 4

∥∥∥∥yn + ym
2

− x
∥∥∥∥2︸ ︷︷ ︸

→δ2

= 2(‖yn − x‖2︸ ︷︷ ︸
→δ2

+ ‖ym − x‖2︸ ︷︷ ︸
→δ2

).

This is only possible if ‖yn − ym‖ → 0. So the limit y = limn yn exists. Moreover,
‖y−x‖ = δ. This point is unique; if we had y, y′ with the same property, the same identity
above gives ‖y − y′‖ = 0.

It now remains to show that z = x − y ∈ M⊥. Suppose not, and choose v ∈ M such
that | 〈z, v〉 | ∈ (0,∞). Now consider

‖x− (y + tv)‖2 = ‖z‖2︸︷︷︸
=δ2

+t2‖v‖2 − 2tRe({z, v}).

This can be made < δ2 unless 〈z, v〉 = 0.

The first part of this proof is appealing to a particular property which does not only
hold just in Hilbert spaces.
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Definition 1.1. A Banach space (X , ‖ · ‖) is uniformly convex if for all ε > 0, there
exists a δ > 0 such that whenever x, y ∈ X with ‖x‖ = ‖y‖ = 1, if ‖(x + y)/2‖ > 1 − δ,
then ‖x− y‖ < ε.

Example 1.1. For 1 < p <∞, Lp(R) is uniformly convex.

Theorem 1.2 (Riesz1). For any f ∈ H∗, there exists y ∈ H such that f(x) = 〈x, y〉 and
‖f‖ = ‖y‖.

Proof. Assume f 6= 0, and let M = {x : f(x) = 0}. This is a closed, proper subspace of
H. By the previous theorem, there must exist a z ∈ H such that z is orthogonal to M . So
pick z ∈ M⊥ with ‖z‖ = 1. For any x ∈ H, consider u = f(x)z − f(z)x, which lies in M .
So

0 = 〈u, z〉 = f(x) · 1− f(z) 〈x, z〉 .

That is, f(x) = f(z) 〈x, z〉 = 〈x, f(z)z〉 = 〈x, y〉.

Corollary 1.1. Hilbert spaces are reflexive.

1.2 Orthonormality

Definition 1.2. Let (uα)α∈H be a collection of vectors in H. The collection is orthonor-
mal if ‖uα‖ = 1 for all α, and when α 6= β, 〈uα, uβ〉 = 0.

Proposition 1.1 (Bessel’s inequality). If (uα)α is orthonormal in H, then∑
α

| 〈x, uα〉 |2 ≤ ‖x‖.

Remark 1.1. When we are dealing with an uncountable set of vectors, we mean that all
but countably many of them are orthonormal to x, so the sum makes sense.

Proof. Suppose F ⊆ A and |F | <∞. Then

0 ≤

∥∥∥∥∥x−∑
α∈F
〈x, uα〉uα

∥∥∥∥∥ = ‖x‖2 − 2 Re

〈
x,
∑
α∈F
〈x, uα〉uα

〉
+
∑
α∈F
| 〈x, uα〉 |2

= ‖x‖2 − 2
∑
α∈F
| 〈x, uα〉 |2 +

∑
α∈F
| 〈x, uα〉 |2

= ‖x‖2 −
∑
α∈F
| 〈x, uα〉 |2.

Theorem 1.3. Let (uα)α be an orthonormal set in H. The following are equivalent:

1This is yet another theorem called the Riesz representation theorem.
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1. (completeness2) If 〈x, uα〉 = 0 for all α, then x = 0.

2. (Parseval’s identity) Besel’s inequality is an equality for all x.

3. For all x ∈ H, we have x =
∑

α∈A 〈x, uα〉uα.

Remark 1.2. It is possible for the sum of the lengths in (3) to be infinite, so this sum is
not absolutely convergent. But the sum of the squares must be finite, as shown by part
(b).

Proof. (1) =⇒ (3). Pick x. Bessel’s inequality gives ‖x‖2 ≥
∑

α | 〈x, uα〉 |2. So
there are only countably many nonzero terms. Enumerate them as α1, α2, . . . . Consider∑n

i=1 〈x, uαi〉uαi . If m > n,∥∥∥∥∥
m∑

i=n+1

〈x, uαi〉uαi

∥∥∥∥∥ =
m∑

i=n+1

| 〈x, uα〉 |2
n,m→∞−−−−−→ 0.

So
∑n

i=1 〈x, uαi〉uαi is a Cauchy sequence, so it converges to some y. Now y = x because
for all α,

〈y, α〉 =

{
〈x, uα〉 α = αi for some i

0 = 〈x, uα〉 α /∈ {α1, α2, . . . }.

This implies y = x by (a).
(3) =⇒ (2): Look that ∥∥∥∥∥x−

n∑
i=1

〈x, uαi〉uαi

∥∥∥∥∥ .
This is the gap we found in Bessel’s inequality. So we get Parseval in the limit as n→∞.

(2) =⇒ (1): If ‖x‖2 =
∑

α | 〈x, uα〉 |2, and the left hand side is nonzero, then there
exists α such that 〈x, uα〉 6= 0.

Definition 1.3. Any orthonormal set satisfying the previous theorem is a basis.

Theorem 1.4. Any Hilbert space H has an orthonormal basis.

Proof. Use Zorn’s lemma.

Remark 1.3. A basis is also a maximal orthonormal set.

Proposition 1.2. H is separable if and only if it has a countable basis.

Theorem 1.5. Let H be a Hilbert space over C.

1. If dim(H) = n <∞, then H ∼= Cn.

2Add this to the list of the most overused words in mathematics.
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2. If dim(H) =∞ and H is separable, then H ∼= `2(N).

Proof. Suppose dim(H) = ∞. Pick a basis {u1, u2, u3, . . . }. For each x ∈ H, map
x 7→ (〈x, u1〉 , 〈x, u2〉 , . . . ) ∈ `2. Parseval’s identity says exactly that this is a unitary
equivalence.
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